

MSIN2009 Group Project

WHAT’S MAPPIN’

Group X

Yanting Li
Edouard (Teddy) Favre – Gilly
Onur Ozturk
John Oikonomou
Teresa Ricciardi
Davin Souza

 2

Executive Summary

This report provides a summary and evaluation of the development process of the creation of

an events-listing platform/app as well as a business solution using the Scrum software

engineering method.

The goal of this project was to deliver an innovative platform that entices millennial party-

goers to attend and discover events tailored to their profile, and develop a network of

business relationships with London venues and hosts.

Our initial idea was to create an events-mapping application, listing events in London on any

given day. Upon group review we decided to refine our target market by concentrating on

University of London students. This decision was made on the basis that the target

demographic were early adopters of technology, were susceptible to monetary offers and

enticements and were a demographic our group felt we could identify with.

Consequently, we decided to change the scope of the events we were listing, focusing

entirely on nightlife; concerts, live music nights at pubs, late night bar happy hours and so on.

The project‘s output is the prototype of our events-listing app, “What’s Mappin?”,

demonstrating its initial essential functionalities:

· Mapping of events to enable our user to visualise the availability of events in their vicinity.

· Create user profiles, drawing data from social media that can be further enhanced by

behavioural data observation.

· Create a marketing platform through which venues can promote their events.

Despite having undergone two prototype iterations, given the nature of our project and its

timescale, many of our application’s features have not been implemented yet. However, our

product roadmap clearly outlines the features “What’s Mappin?” will include in future

iterations.

Using the Scrum methodology of software development, our agile and dynamic team

produced a minimal viable product ready for launch. This prototype is accompanied by a

detailed report outlining our business case, requirements, analysis and design allowing any

potential stakeholder to envisage and endorse our product.

 3

Introduction, Problem Outline & Solution

What’s Mappin’ (WM) is an events-listing platform that intuitively displays events

geographically to allow users to visualise event availability.

Our innovative platform addresses a very specific problem. Many groups or individuals plan

to meet up and socialise with a view to going out to events after. What we consider events are

attending club nights or concerts that are in line with the group’s interests.

That said especially where groups are concerned, choosing and planning an event beforehand

can be a difficult process. Not only does everyone need to confirm their availability for a

given date and time, but all group members must book their tickets for the event before it

sells out. What’s more there is always the likelihood that when meeting up beforehand, the

group feels less enthusiastic about the previously decided plan and wish to go elsewhere.

Our app allows for spontaneity. The platform displays events geographically on a map, so as

to see what events are on in the user’s vicinity. A Nesta report showed a trend of nightclubs

and venues closing in the city centre and an increase in city periferral venues opening

(https://www.nesta.org.uk/blog/clubbing-map-what-has-happened-london-nightlife) (such as

the new 2015 Printworks and the rise for Shoreditch as a ‘clubbing area’). Our platform

capitalises on this trend bring the nightlife towards you. It is increasingly likely there are

venues opening outside the long-established Mayfair and Soho areas, and nearer to our user’s

location. The £26.5bn nightlife industry (https://www.nesta.org.uk/blog/clubbing-map-what-

has-happened-london-nightlife), relies heavily on drink and merchandise sales. The average

London partier spends £19.67 (https://www.eventbrite.com/blog/bar-management-for-music-

venues-ds00/) on drinks on a night out and consequently venues would benefit from

increased attendance and filling up capacity.

By displaying nearby events, we are encouraging users to attend events nearby so as to make

sure that venues are operating at maximum capacity. A group looking to go out could be

offered last minute incentives to attend events that have not sold out of filled up.

Another issue our app addresses is event exposure. Many young venues struggle to gain the

exposure to attract the necessary clientele (https://www.nesta.org.uk/blog/clubbing-map-

what-has-happened-london-nightlife). With the clubbing industry suffering a loss in revenue

of 8% since 2013 (https://www.ibisworld.co.uk/industry-trends/market-research-

reports/accommodation-food-service-activities/nightclubs.html), venues are having to market

themselves in new and innovative ways. Despite this, the number of venues opening each

year is on the rise. Our platform would allow venues to offer targeted discounts and

incentives for events to users that suit their demographic.

A major element of our platform’s functionality would be gaining information on our user.

By encouraging users to create a profile or sign in through social media (described in data

subsection) we would instantly access information about our users age, sexe and interests or

‘likes’ amongst many other forms of data. To optimise our knowledge of our user, our

application would gather data on our user’s behaviour, so as to learn how to optimise our

targeted events marketing strategy (detailed in optimisation/data/user feedback section).

https://www.nesta.org.uk/blog/clubbing-map-what-has-happened-london-nightlife
https://www.nesta.org.uk/blog/clubbing-map-what-has-happened-london-nightlife
https://www.nesta.org.uk/blog/clubbing-map-what-has-happened-london-nightlife
https://www.eventbrite.com/blog/bar-management-for-music-venues-ds00/
https://www.eventbrite.com/blog/bar-management-for-music-venues-ds00/
https://www.nesta.org.uk/blog/clubbing-map-what-has-happened-london-nightlife
https://www.nesta.org.uk/blog/clubbing-map-what-has-happened-london-nightlife
https://www.ibisworld.co.uk/industry-trends/market-research-reports/accommodation-food-service-activities/nightclubs.html
https://www.ibisworld.co.uk/industry-trends/market-research-reports/accommodation-food-service-activities/nightclubs.html

 4

Business Plan & Monetisation

We consider user experience and user interface to be key to expanding our user platform.

Hence WM does will not be using external advertising banners or pop-ups of any from on the

application. All our form of advertising will come incorporated in the app’s functionality,

listing events to targeted users.

For this reason, we have devised a monetisation plan that is based on venue referral

commission. In this section, we will define level 1 referral, level 2 referral, and ticket sale

commission.

Level 1 referral:

As can be seen from our app demo and mockup screenshots, when a user browses the map

listings, they can click on an event marker to view information on the event from within our

platform. We consider this to be a step 1 referral. This enables the user to find out the name

of the venue, exact time and location, event details and line-up. This gives the venue a level

of exposure. Our application will have informed a targeted user about what the venue has

organised for the evening. For this level of referral, WM will incur a fee of £0.02 on behalf of

the venue.

We consider this fee to be worth well below its future value, as if a venue were to get level 1

referrals from 50 users, they would have spent £1 on customer acquisition. Were just one of

these 50 referrals to result in a ticket sale – assuming the venue is hoping to make more than

a pound’s profit on each attendee – the acquisition cost would be outweighed by the venues

revenue-making capacity.

Level 2 referral:

If the user is particularly interested by the event information we have provided through our

platform, they may choose to continue to the venue’s website. From there the user would see

the venue’s entire marketing platform, increasing the venue’s website traffic and giving the

user a fully immersive description of the venue’s event that night. Given the event hosts’

confidence in their website design and marketing strategy content, website traffic is a

welcome catalyst to ticket sales.

For this level of referral, WM will incur a further fee of £0.04. If 25 such users were to

navigate onto the venue’s website this would incur a fee of £1. It should be noted that these

users, tracked by their device’s IP address, now on the venue’s website, are users our

platform have deemed statistically likely to attend the event.

Ticket sale commission:

Finally when one of these users purchases a ticket for the event, WM will incur a commission

fee based on the ticket sale. Initially there will be no commission fee so as to prove to venues

that we are generating ticket sales. Once we have sufficient sales figures we will approach

venues with our sales figures on their behalf and announce our monetisation method. As

such, WM will provide a marketing platform free until we have gained sufficient exposure to

leverage commissions costs. Venues who do not agree to our business model can negotiate or

 5

choose to be excluded from this London-wide venue listing platform. For tickets over £5, a

commission of 15% would be incurred.

Venues offering cheap tickets hoping to boost revenue through drink and merchandise sale

will be able to grant us the permission to offer incentives such as offering our users a free

first drink in their venue. Listings below £5 would incur a flat fee of £1. This is because

ticket prices under £5 would not yield enough commission fee alone to justify the increased

number attendees our platform will have provided. Incentivising is a major part of our

platform’s user-base expansion program (as detailed in marketing section) and we would

welcome the opportunity to offer WM exclusive deals.

Scenario 1

If Club X were hosting an event which had not sold out, selling tickets for £3 and offering

£2.50 drinks hoping to attract students on a week-night. An individual could encourage their

group of three student friends to download our app and could use our platform to be directed

toward Club X’s WM event marker, then through to their website, and purchase 4 tickets,

each receiving a free drink inside.

The WM fees incurred would be £0.02 (level 1) + £0.04 (level 2) + £1 = £1.06 for each user.

The free drink (beer or standard mixer) would likely cost the venue 50p. Despite an

opportunity cost of £2, the free drink is shown to increase spending in venues

(https://www.washingtonpost.com/lifestyle/travel/at-some-vegas-casino-bars-non-gamblers-lose-their-free-drinks/2017/05/11/d77a35dc-31cc-11e7-9534-00e4656c22aa_story.html) ,

increasing total drink sales, and hence would likely yield multiple sales of £2.50 drinks, each

generating £2 profit.

So for scenario 1, the club has paid a customer acquisition fee to WM of just £3.18 and

offered a free drink (£0.5) per ticket sale. Consequently it will have received £5.82 of ticket

sales otherwise forgone and have incentivised their attendees to spend more during their

evening at the event generating £2 further profits per drink bought.

Level 1 referral fees are a necessary component of WM’s monetisation strategy, as our

platform makes event announcements look exciting and enticing so as to encourage users to

engage with the application and be more informed of the event landscape on a certain

evening. The more the user engages with the events listed on our app the more level 1 referral

fees WM will receive and a user could generate a number of such fees just by browsing

through our platform, without even having to secure a payment through the application.

Another method of monetisation would be encouraging venues to promote their event further

on our platform by purchasing certain advertising packages. Not only by offering our users

targeted offers and incentives but also by purchasing listing promotion packs from the WM

platform a venue could significantly increase its exposure to keen party-goers.

The reason we have decided to target students of the University of London as our target

demographics in four-fold. The first is that we associate with that demographic and

understand the users need. The second is that this demographic has a high price elasticity of

demand and can easily be enticed by offers and discounts which are the core customer

acquisition strategy of our platform. The third is that the WM platform needs to create a loyal

customer base and to do so we are choosing to focus solely on London students. This will

https://www.washingtonpost.com/lifestyle/travel/at-some-vegas-casino-bars-non-gamblers-lose-their-free-drinks/2017/05/11/d77a35dc-31cc-11e7-9534-00e4656c22aa_story.html

 6

enable our platform and logo to be associated with going out for a whole generation and

demographic of London society. This leads on to the fourth point that this customer base will

graduate and enter the job-market, becoming even more monetizable, and a trend in London

Universities would quickly spread to other universities through such media and social media

pipelines as ‘The Tab’ and consequently could spread to universities in other countries and

culture.

The reason we are keeping our referral and commission fees low for our app launch is to

encourage venues to use the WM platform so as to get a large enough pool of venues listing

that our users feel that our platform represents a good proportion of each day’s nightlife

canvas.

 7

Business Canvas Model

 8

Roadmap

As our platform is merely in its infancy, our main objective during our project’s timeline was

to produce a minimal viable product ready for market so as to begin grabbing market share

and growing a user-base. Although our features include the ability to refine events, search

etc, there are many features that WM would like to incorporate into its platform in the future.

First of all, once the user base is established, WM could expand into other events, gaining

users from different demographics and with different interests and diversifying its listing

platform. This would enable higher revenue, greater market stability, in case the nightlife

industry began to suffer, for instance, and could increase our prominence and leverage over

event holders.

Another consideration for the future could be that WM could host its own events. Much like

certain ticket retailers such as New York Resolute have now integrated, hosting events in

venues, WM could capitalise on its image of cool young spontaneity and start hosting live

music events in London, promoting heavily to our user base.

We would also like to optimise our app to our user’s preferences, and to do so would require

time to collate user response and click data to gauge where and how we could improve. WM

envisages including more ‘filters’ in its app side-bar so as to allow the user to refine their

event searches to a greater extent.

As far as the monetisation of the platform, once WM becomes an established events listing

platform with a loyal user base of soon-to-be working graduates, we would have a greater

level of leverage over event hosts and would be able to charge greater commission and

referral fees for our services, with a view to making the company profitable within 5 years.

A final feature WM considers for its roadmap would be a ticket swap feature, whereby

people could swap tickets last minute with other users to gain access to otherwise sold out

events. Once WM amasses sufficient users, there could be a big market for last minute

swapping.

Scrum project management

During this group project, our group worked in a cohesive, agile manner. Although we

somewhat adopted the titles of software developer, UI/EX leader, testing specialist etc, every

team member was able to contribute all sides of the project. As such we were following the

basic principles of Scrum.

YanTing Li took the role of Scrum Master, organising and logging all sprint planning and

reviewing sessions. YantTing also took close control of the requirements and formed the

MOSCOW analysis contained below.

Teddy Favre-Gilly took the role of Product Manager, acting as the link between the technical

and business persons within the team. In terms of output, most of Teddy’s contribution came

 9

in the business and market analysis section, where he devised the platform’s monetisation

strategy and collaborated with Teresa Ricciardi on the marketing and go-to-market strategies.

Teresa Ricciardi lead the marketing side of WM, producing an in depth report of marketing

strategies used previously by apps targeting our same demographic and consequently

devising a marketing strategy specifically for What’s Mappin’. Teresa also collaborated with

John on the competitor analysis below collating information on all of our platform’s potential

competitors and listed in bold below each case, why WM is different and why our user might

choose our platform over our competitors.

John was head of the UX/UI team responsible for prototyping the app working with the Java

code Onur had already implemented. As well as this John contributed to the competitor

analysis, use case diagrams and was essential in thinking up of filtering features the product

displayed.

Onur Özturk acted as our main developer, initially writing Java code to get our idea up and

running to create a first prototype. In later iterations, Onur was instrumental in creating UML

diagrams, sequence diagrams and statement sheets.

Davin was our team’s main tester, running tests on each of our prototype’s iterations,

conceiving our data gathering and use strategy and was further central to creating all of our

UML diagrams.

 10

All the team were aware of what work they had to prioritise thanks to the Backlog initially

created by Teddy (version 1 above) and then improved upon and optimised by Yanting

(version 2 below)

 11

The group have attached pictures of our group sprint plans and reviews which we conducted

all together at a café in Green Park ‘Joe and the Juice’. The coffee shop with a silent room

and chalk board at the back became an upholding of our group’s culture and great working

dynamic!

 12

During our project timeline, one of our team members became an aunt and the baby (see

above) became the group mascot.

In terms of our broader timeline, we had set ourselves a waterfall timeline to show where our

minimum progress should be at any given point (below) but since we were working in Scrum

iterations we never fell behind on these deadlines and comfortably met our project deadline.

Competitor Analysis

By completing a competitor analysis on some of the following events platforms/apps it is

possible to identify what makes our product, an event mapping app, unique and can

demonstrate the attributes we wish to apply in order to target our target market; students.

Eventbrite

What's Mappin Team Progress
1

PERIODS

1 2 3 4 5 6 7 8 9

Ideas Formation 1 2

Features Development 1 3

Revenue Stream 1 4
Target User

Refine/Personas 2 3

Database 2 4

Code Implementation 3 3

Marketing Research 4 4

Business Model 4 1

Database 4 2

UML Structure 5 3

UX Design 7 2

Writing of content 7 2
Writing of executive

summary 8 1

ACTIVITY START DURATION

Plan Duration

 13

Eventbrite is an event management platform for event seekers and event organizers. The

Eventbrite app is an app enabling anyone to create, promote and sell tickets to any event

whilst also helping people discover and share events they like. It allows a user to discover

events near them, by selecting their location, though a “discover” tab where recommended

and popular events in the area appear. Also, a user can connect to Facebook to see what

events their friends are attending. Users can browse by category, keywords and location as

well as being able to filter their results by relevance, date, distance and price.

To purchase tickets users can simply register or “get tickets”, where they can add tickets to a

“cart”. After, a continue button is provided where they must confirm their personal

information and enter the payment information which is then finished by a “complete order”

button. The user will then receive an email with their order confirmation.

Users can find tickets in the Eventbrite app through a “Me” tab where they can view details

about all events they’ve registered for, get in touch with their event organizer or show their

ticket to be scanned at event entry. Also, there is an option to add the ticket to Apple

wallet/passbook.

Another feature that Eventbrite offers users is the saving and sharing of events. To save

events, users must tap a bookmark icon and can find them in the “Me” tab by tapping on the

“Saved” icon. To share events, users need to tap the arrow icon on the “Discover” tab and

these can be shared with a new text message, email, a link to the event, twitter, Facebook or

WhatsApp. Also, if the users connects to Facebook they will receive notifications notifying

them when friends of them are going to the same events (Antwonne D, 2017).

 14

Currently, on the app store, Eventbrite is number 33 in Entertainment and rated 4+/5 with a

total of 178 ratings. It is available in English, German, Spanish, French, Italian, Dutch,

Portuguese and Swedish. In terms of event organizers, Eventbrite has a separate app called

Eventbrite Organiser allowing these to sell tickets and manage guests and entry.

(Eventbrite,2016)

Despite its excellent user interface, it has been found to have a couple of poor ratings on the

app store. For example, a user rated EventBrite 1/5 stars and below the title “Worst ordering

app/website” left the following comment “I ordered tickets through this website today and

 15

it’s terrible. First of all it timed out after asking for unnecessary information on every person

attending the event. I never received all the tickets. Their “how can we help section” was not

helpful at all. I called their customer service whose automated service told me to reply to the

order email. I replied to the order email and received an automated email to say the mailbox

is not in use. Tried contacting through Facebook, no response yet. Enough to test anyone’s

patience, I’ve been trying to sort this for 2 hours!!”.

WhatsMappin offers mapping features of events, clearly showing events on a map to

guide users, promotions and free drinks, which EventBrite does not.

EventNook

EventNook is an Asian leading event management software company offering complete end-

to-end online event registration and ticketing solutions through an online source as well as

through the app EventNook CheckIn Pro. EventNook is a platform/app only for event

organizers so does not apply to event attendees like WhatsMappin. Features provided by

EventNook include mobile friendly event registration, customisation of registration form and

detail collection, easy online payment, discount & promotions, email customization, QR code

ticketing, auto email confirmation, management of registration and sales in real time,

analytics and advanced marketing tracking and auto-generated invoicing (EventNook,2017).

In terms of the app, it is free and contains all these features but specified on the app store

EventNook Check-in Pro allows quick attendee check, QR-code scanning e-tickets and

instant ticket verification, break-out session attendance tracking, custom designed badge

printing, searching registered attendees by name and email and viewing what’s happening

with the attendance on the go (EventNook,2017).

 16

WhatsMappin offers features for event seekers/ateendees which EventNook does not, as

it focuses simply on event organizers.

Vendini

Vendini is a company that “provides dependable and easy-to-use ticketing, marketing,

fundraising and patron management solutions to any-sized organization.” It also offers an app

called Vendini TicketScan with 5 different features including sales spotlight which allows

access and sharing of live sales and inventory data; patron connection where users can meet

their personal day-of-show assistant; TicketAgent providing a convenient box office solution;

TicketScan allowing ticket scan and control of access to events and finally Walletini which

allows to find, purchase, store and transfer events and tickets. Only the last 3 main features

are relevant to our app as the others are not focused on events (Vendini,2001).

On the app store, there is limited information about the app with only one image of its user

interface and not enough reviews to display a summary. However, it is rated 4+. overall

(Vendini, 2013).

 17

WhatsMappin offers last minute ticket proposals and mapping features which Vendini

does not, increasing last-minute sales for event organizers.

EventBase

EventBase is a mobile event technology platform targeting global enterprises with current

customers such as IBM, Cisco, Microsoft, SAP etc. They have 7 different app products:

Enterprise Event apps, Corporate Meeting apps, Conference app, trade show app, festival

app, sports events app and Eventbase Free (Eventbase, 2017).

Eventbase is a free app which is in most relevant direct competition with WhatsMappin as

it’s claimed to be “the world’s most powerful event app platform”. It provides information on

conferences, music and film festivals, trade shows and fairs, sporting and community events

and many other events. This app is for event seekers only and provides the following

features; searching for any event by category, downloading event schedule to be available

offline, receiving updates to the schedule from event organizers, building own personalized

schedule, find out who is at the event, viewing of maps with venue locations, sharing of

experience on Facebook, Twitter etc and searching for sessions, participants and venues.

There is not enough customer ratings to display summary on the app store (Eventbase,2016).

 18

WhatsMappin offer promotion for event organizers which EventBase does not, as it

solely focuses on event seekers.

DoStuff

DoStuff is a local media properties network run by local teams in 20 cities, mainly in the

United States, answering the question “What am I going to do tonight?”. The app provided on

the App Store, and also available for Android devices, is called “DoStuff – What To Do

Tonight”, is free and allows users to find out what is happening in the current city they are in

(DoStuff,2017). Location-based search and redesigned profile pages are two features that this

app provides. Also, users can browse events by category and locations in the “Do” tab whilst

in the “Discover” tab users can find curated event listings and articles created by the

network’s team. Users can share everything they wish through a share button and can add any

event in the app to their calendar through clicking a plus sign on the event card. If users wish

to be notified on events of artists they like they can click the plus sign next to their name and

 19

will be automatically notified when these exist in their current city. To change city, users

have to click on the city logo to go back to the selector. Currently, the DoStuff app contains

564 ratings on the app store but no overall rating (DoStuff,2017)

WhatsMappin offers mapping features of events which DoStuff does not, clearly

showing events on a map to guide users.

Bandsintown

Bandsintown is a concert discovery platform where fans can connect with their favourite

artists. The app exists both on the Apple Store and for Android devices and allows users to

search for concerts, shows, festivals etc by browsing through location or artist. After doing

so, it displays the event details as well as the links to where to find tickets. Users can also

track artists by pressing “Track This `artist” which will then notify them about upcoming

events which they will perform at.

Currently, on the app store, it contains 3320 ratings, is rated overall 4.6 and is number 60 in

 20

music. It has many positive reviews such as “London has many venues with many great

bands performing every day, not perfect but it’s ability to capture and tell you what’s going

on is what this AP is about!” (Bandsintown, 2017).

WhatsMappin offers mapping features of events which Bandsintown does not, clearly

showing events on a map to guide users.

All Events in City

All Events in City is an event aggregation platform to help people discover events happening

around them, providing both an Android and Apple app (All Events in the City, 2017).The

app does not require the user to sign up and allows them to browse events through categories

e.g. parties, concerts, seminars etc, search events by location and mapping them on google,

adding events to calendar and filtering events by date or categories. However, the user can

 21

sign up and if he/she does so then he/she will be provided with additional features such as

being able to collaborate with friends, finding events recommended for them, keeping track

of events they have attended, know which events their friends are going to and follow their

favourite event organizers to get notifications on these events. Moreover, this app is not only

for event seekers but also for event organizers as these can use the app to promote the event.

Currently, on the app store, it contains 59 ratings but has no overall rating (Amitech, 2017).

WhatsMappin offers last minute tickets, money off and free drink proposals which All

Events in City does not, captivating

What differentiates WhatsMappin from its competitors?

By analysing WhatsMappin’s competitors we can establish what features we can offer that

our competitors have not implemented. None of these apps seems to have a feature of last

minute tickets which our app will have an emphasize greatly as our target market, students,

tend to purchase tickets “last minute” and would greatly value a platform that allows this

process to be stress-free and easy. Also, WhatsMappin will constantly emphasize money off

and free drinks on the relevant events it promotes to capture a greater share of the target

 22

market. Furthermore, an important feature which is not apparent of any of these competing

apps is a disability function, which our app will implement.

However, we still haven’t implemented a tracking feature as many of our competitors do so

that users can track artists, events or venues they specifically like. Also, we do not have an

option to add the events to a calendar which would be helpful for students who keep a busy

life where organisation is key.

Marketing Strategy

In order to devise the most adequate marketing strategy for WhatsMappin we must perform

an analysis of the marketing mix’s four P’s: Product, Price, Place, Promotion

Product

WhatsMappin is an event-listing

platform/app that maps events

geographically, allowing users to view

events by location and availability. Our

app provides a convenient solution for

event seekers, looking for last minute

ticket opportunities, and event owners,

looking to fill up their event’s. We target

a student consumer group, which is very

price sensitive and influenced by the

behavior of others hence the word of

mouth community is a key factor in

generating success for our app.

Our value proposition consists of offering

the benefits of convenience, discovery

and entertainment all in one app. This is

possible due to the implemented features

of filtering of events based on location and price as well as being search events which relate

to users’ favourite clubs or artists.

Moreover, our app maps the events so a user can more clearly see how to reach it depending

on where he/she will be going from. Last minute tickets, money off and free drinks are

features users can use in the app which attract more users to events.

Price

Currently, our app is free thus we do not have a specific pricing strategy set. However, in

terms of making profit we do set a pricing strategy based on a referral scheme and ticket sales

commissions, as emphasized in the business plan and monetization.

 23

The profit made from these two strategies will allow

further investment for the growth of the app and its

exposure. For example, we will invest in producing

leaflets to hand out to students at universities as well

as advertisement on social media platforms such as

Facebook and Twitter. Customer acquisition cost is

key as it can be noted that a large sum of investment is

used for it to increase the number of users using our

app.

Place

In terms of place, our app will be available on the

android store.

Promotion

The promotional strategy is specifically important in the early stages of the app, since we

need to establish a positive word-of-mouth. Deliveroo, UberEats and Tinder are all great

examples to follow in terms of their promotional strategy due to their established world-wide

exposure, made possible through investing hugely into the promotion section of their

marketing strategy. Advertising on social media as well as inside universities will cover a

great proportion of our investment into the promotional strategy, as a positive word of mouth

will be needed straight from the beginning.

Enticing first-time customers with generous discounts off their first orders, like Deliveroo, is

a strategy WhatsMappin will adopt in order to increase its user base. Also, users will be able

to insert promotion codes enticing them to use the app. Deliveroo used stunt marketing in the

early stages of its lifecycle through, for example, staff in Deliveroo Singapore every Friday

putting on kangaroo onesies and heading to the streets of the main business district to hand

out flyers, notebooks and other merchandise, since they knew a high proportion of their target

users (people who work at offices and order lunch) would be there. This is a strategy we have

in mind by aiming at our target audience, students, when going to Universities and

 24

performing a similar activity whilst giving out flyers and promo codes. Also, as seen by

Deliveroo, influencers and bloggers promoting the app is a huge step in establishing brand

presence. Therefore, we will contact these respectively to maximize exposure on social media

(Lee, 2016).

Ubereats initially established a test

market for the app in Toronto before

rolling out into other states followed

by other countries. This strategy

allowed them to monitor feedback

effectively and react appropriately,

fixing any evident problems and

offering quick solutions to customers’

problems. In our promotional strategy,

we will implement a similar concept

by firstly only concentrating on the

central London area, targeting

university campuses, to gain initial

insights and feedback, and after

expanding into other locations whilst

we optimize our app. Another

important lesson learnt by UbereEats is

the importance of listening to

customers and adapting appropriately.

UberEats interviewed and handed out

surveys to customers which provided them with feedback on customers wanting more

restaurant options and better food, which they used to optimize the app. Interviews and

surveys are essential to optimize our app as we will confront customers on what they wish to

see on the app, that isn’t available, as well as any disappointing features they wish to be

improved (McClelland, 2016).

WhatsMappin will host launch events at universities around London where entrance and free

drinks will only be permitted if attendees show proof of having the app on their mobile

devices. This strategy was implemented by the successful dating app Tinder and greatly

impacted on the number of users downloading the app. Also, we will carry out personal

outreaches through individually approaching students at universities and campus events to get

at least 10 people to download the app, by handing them a free drink (Hackett, 2015).

 25

Data Selection and optimisation

A crucial element of What’s Mappin lies in custom tailoring the in-app experience according

to the personality and needs of the app user in such a way to provide them with a streamlined

and non-intrusive experience. Keeping information relevant to the user and not overloading

individuals with suggestions and recommendations that have nothing to do with them will be

vital in increasing user retention rates, attracting new users, and increasing the overall

satisfaction of the app.

In this section, we’ll explore what data we’ll be collecting from users, how and why, and

additionally the procedures we’ll be using the collect and analyse that data.

Data collection procedure:

There are two forms of data our app will collect. Registration data (data gained when the user

creates an account) and clickstream data (data obtained based on user interaction with the

app).

To quickly collect as much useful data as possible from users, we plan to use social logins

within our app using the Auth0 API. The Auth0 API will allow users to quickly login from

their favourite social media websites like Facebook, Google or Twitter etc. Not only would

this grant us access to up-to-date profiles immediately, it’ll also allow users to login quickly

and this would also increase registration rates.

On the interface side, all the user would have to do is enter the app and click their preferred

social media platform. A login request is then sent to the platform where the user’s identity is

confirmed, upon which they are registered and logged in. This method also means that we

don’t need to implement specific APIs for each social media platform or use their methods to

request certain bits of data as the data we need to collect can be chosen beforehand on

Auth0’s website. However, the final finished product will still need code for call-back URLs,

set credentials, hosted login pages with instances and methods for obtaining and holding user

credentials, session handling, etc.

A. Basic user data – attributes/demographics (Explicit data gained in registration process)

(Number in brackets is priority for that piece of data. High numbers mean more relevancy)

1. No names (due to privacy concerns, we can’t take their actual names, but we can take

user names, and we can store their profiles in the database with ids’ like Id1674363).

2. Email – Needed for registration confirmation, updating the user on new events,

password resets, etc (4)

3. Age/Birthday – Can act as a minimum age requirement barrier to displaying certain

events, can be used as part of a decision-making algorithm for event recommendations that

are dominated by a certain age group or for recommending friends who are at the same age

group. (3)

4. Education history – Same as age but with education history (1)

 26

5. Friends – Can take list of friends out of Facebook and apply it to the users existing

account on our app. (2)

6. Hometown – Useful for marketing and researching demographics, as well as friend

recommendations. (1)

7. Current household location – Can be used to suggest events and friends from nearby

vicinity. (3)

8. Relationship status – If single, can suggest events where opposite gender tends to be

slightly more frequent. Extremely useful for the pickup community (3)9. Work history –

Same as education history (1)

10. Gender – linked with relationship status. Some events are also gender sensitive, like gay

night clubs. (3)

11. Ethnicity/nationality – Same as hometown. (2)

12. Average Income – Can be used for matching users to events they can afford (1)

13. Hobbies – Same as age/birthday.

Clickstream data is data gained from the process of the user interacting with the app. It keeps

track of the behaviour and preferences, what type of events they like, how often they go to

events, the time between usage, etc. This information can then be used to create consumer

models for predicting which type of events (or just a certain event) are going to be sold out,

what types of user usually dominate those events, and so. This data can not only be used to

give better recommendations that adapt to the user’s tastes, but also used for marketing and

developing new business strategies around targeting a specific demographic, selling the data

to research companies, or offering brand new services that provide consulting to event

makers.

To collect clickstream data, we simply add counters variables to a user ID’s column in the

database and increment them whenever the behaviour behind that action is reinforced.

B. Advanced user data – Activity/Preferences (Clickstream data – gained in the process of

interacting with the app)

1. Most viewed events – to understand user preferences and update their event

recommendations (3)

2. Track user location – same as household location (3)

3. Logins per day – used to gauge whether individual is a light or heavy user and identify

peak times for app usage (2)

4. Time spent on app – same as logins per day (2)

5. Time between events participated – Used to identify peaks, slumps, and overall trend of

user activity. Can be used to discover users who are falling away from the app. (2)

 27

6. Number of events participated by type – useful for event recommendations (2)

7. Opinion of events – judged by likes, or by similar mechanics (2)

8. Last sign in date – same as logins per day (2)

In addition to all the above data, we also plan to collect data on the user’s device to help with

troubleshooting any future bugs that might have not been caught during the testing phases of

the app.

C. Debugging data

1. Device info – OS version, phone model

2. Network conditions – IP address, Mobile network, unique device identifiers.

How we plan to store the data in the long term and short term:

A short-term affordable solution which we can use now is to the put the data in a simple

spreadsheet (or access which is an actual database software). We decided that the best way to

go about this would be to use Google spreadsheets (for now) as a platform for storing user

data. Since the tool is free and available online, there are no costs involved in establishing

this as a database and the database will be available 24/7 online, so no need to host one in our

own databases.

Somewhat detailed description of getting the data from the app over to google spreadsheet:

1. Create the google spreadsheet as a form.

2. Build app and store user data in application data folder in a file as a JSON object.

3. Get input hook from spreadsheet.

4. Integrate input hook into existing code using Retrofit API to transfer user data into app.

Once we begin acquiring many users (like 100,000), we plan to invest into an actual database

and use a typical 3-tier architecture for storing data:

The client/presentation tier represents our android app (At the moment, a mobile client will

be our interface with the user). This is the area where users interact with the app and data is

first collected. The logic/application tier lies in the app and is responsible for transferring

collected user data over to the database and receiving results from database queries on lists of

events, etc. As for our data tier, we plan to use Oracle DB as our database technology for

storing and retrieving user data. Oracle DB is currently one of the best and most dependable

database platforms on the market supports android app development and testing (regarding

the database). Oracle DB has a strong and robust synchronization engine capable of

connecting many physically remote DBs synchronized to main backend Oracle DB system.

Encryption for data transport and storage is also supported.

How we could use the data collected (I don’t really have much info here):

In-app usage:

 28

1. Event suggestions

2. Friend suggestions

Program on server shifts through data, makes a list of recommendations based on

criteria/algorithms. These lists are send to the Users phone in app data folder, where the app

reads the list and displays it as recommendations.

Marketing/Business usage:

1. Tracking user trends – popular events, etc

2. Tracking usage

3. Segmenting users and targeting specific segments and sub segments

 29

Requirements
MOSCOW Analysis

 30

User profiles

 31

Host Profiles

 32

Textual Use Case Tables

USE CASE Establishing internet connection

ID UC 1

BRIEF

DESCRIPTION
User must establish internet connection before opening the application.

PRIMARY ACTORS User

SECONDARY

ACTORS
-

PRECONDITIONS -

MAIN FLOW 1- User must be connected to internet via Wi-Fi or cellular. (Using Wi-

Fi will give more accurate results in terms of plotting the location.)

POST CONDITIONS User established internet connection

ALTERNATIVE

FLOWS
-

USE CASE Login

ID UC 2

BRIEF

DESCRIPTION
User attempts to log into the system using one of the given alternatives

(Facebook, Google+ Instagram).

PRIMARY ACTORS User, Facebook, Google, Instagram

SECONDARY

ACTORS
None

PRECONDITIONS User must establish internet connection

 33

MAIN FLOW 1 User sees the login screen.
2- User gets to choose from three different login options.
3- Connection with the relevant API is made.
4- API checks for account information.

POST CONDITIONS User is logged in.

ALTERNATIVE

FLOWS
Invalid Login

 34

USE CASE Invalid Login

ID UC 2.1

BRIEF DESCRIPTION Login attempt is failed due to missing account information.

PRIMARY ACTORS Facebook, Google, Instagram

SECONDARY

ACTORS
None

PRECONDITIONS User tried to log in with a selection which does not hold the account for

the user.

MAIN FLOW 1- User is informed about the failed attempt and is asked to try

again.
2- The welcome screen is displayed again, where the user gets

another choice.
3- Following steps are identical with UC1.

POST CONDITIONS Failed login

ALTERNATIVE

FLOWS
-

USE CASE Plotting Map Data

ID UC 3

BRIEF DESCRIPTION Google Maps API plots the current location of the user on the map.

PRIMARY ACTORS User, Google Maps

SECONDARY

ACTORS
Event providers

PRECONDITIONS User must be logged in with an account.

MAIN FLOW 1- Current location of the user is plotted on the data along with the

regular Google Maps data.

POST CONDITIONS Current location is plotted on map.

ALTERNATIVE

FLOWS
User’s last known location is plotted.

 35

USE CASE Plotting Last Known Location

ID UC 3.1

BRIEF

DESCRIPTION
If there is no internet connection at the given moment, the last known

location of the user is saved as an instance to be used for later.

PRIMARY ACTORS Google Maps API

SECONDARY

ACTORS
-

PRECONDITIONS User must have a known past location.

MAIN FLOW 1- The last saved instance of the user is called by the code to be plotted

on the map.

POST CONDITIONS Last known location is plotted on the map.

ALTERNATIVE

FLOWS
-

USE CASE Plotting Events Data

ID UC 4

BRIEF

DESCRIPTION
A request is made to the events API which responds in JSON format.

PRIMARY ACTORS User, Events API, Google Maps API

SECONDARY

ACTORS
Event holders, event location

PRECONDITIONS There must be events present in the vicinity of the user.

MAIN FLOW 1- A HTTPS connection is made with the events API, using correct

parameters for the URL.
2- A JSON response is captured by the application.
3- The JSON response is parsed into Java objects.
4- Java code implementation, working with Google Maps, plots the

events around the user given their longitudes and latitudes.

 36

POST CONDITIONS Events around the user are plotted.

ALTERNATIVE

FLOWS
No events are present.

USE CASE Receiving event description

ID UC 4.1

BRIEF DESCRIPTION All the available description regarding the event is requested from the

event API.

PRIMARY ACTORS Events API, Google Maps API

SECONDARY

ACTORS
Event providers

PRECONDITIONS Event description must be present in the events API.

MAIN FLOW 1- A request is made again to the events API regarding the

description.
2- The response is received by Java code to be parsed into object

format from JSON.
3- The useful information is held in variables to be displayed.
4- The Java objects are displayed to the user according to their

selection of descriptions.

POST CONDITIONS Event description is displayed

ALTERNATIVE

FLOWS
-

USE CASE Selecting Filters

ID UC 5

BRIEF DESCRIPTION User may choose to apply filters to eliminate events of uninterest.

PRIMARY ACTORS Google Maps, User

 37

SECONDARY ACTORS -

PRECONDITIONS Events must be tagged before displaying.

MAIN FLOW 1- The filter screen is displayed with all the filters on..

POST CONDITIONS Unchecked events are removed from the map.

ALTERNATIVE

FLOWS
-

USE CASE Displaying account information

ID UC 6

BRIEF DESCRIPTION The information about the user account will be displayed on this

selection.

PRIMARY ACTORS User

SECONDARY ACTORS -

PRECONDITIONS User must not have logged in as a guest.

MAIN FLOW 1- The information is pulled from the servers in an encrypted

way.
2- The screen shows the following:
a. Change options for both username and password.
b. Delete my account option.
c. Privacy
d. My past events
e. Sign out

POST CONDITIONS Account information is displayed

ALTERNATIVE

FLOWS
-

 38

USE CASE Promotion

ID UC 7

BRIEF DESCRIPTION A page which allows users to enter their promo codes to have free

drinks at events.

PRIMARY ACTORS User, Admins

SECONDARY

ACTORS
-

PRECONDITIONS User must have acquired a promo code.

MAIN FLOW 1- The screen shows up with a textbox allowing users to input

their promo code.
2- After the code in inputted, the servers check the legitimacy of

the code.
3- If the code is valid, the user is granted free drinks at events.

POST CONDITIONS -

ALTERNATIVE

FLOWS
-

USE CASE Accessing the Main Menu

ID UC 8

BRIEF DESCRIPTION User must tap the three-bar button on the left of the search

bar to access the main menu.

PRIMARY ACTORS User

SECONDARY ACTORS -

 39

USE CASE Selecting

“Help” in

Main Menu

ID UC 8.2

BRIEF

DESCRIPTION
User gets

provided

with

assistance

methods to

overcome

any issues

within the

application.

PRIMARY

ACTORS
User

SECONDARY

ACTORS
Bot

PRECONDITIONS User is in

the main

menu of

What’s

Mappin

MAIN FLOW 1. User is

in the main

menu
2. User

taps on

“Help”

button
3. User

selects

between

Voice

Assistance,

Contact-a-

bot (a bot

that

answers

predefined

questions)

and FAQs

POST

CONDITIONS
User gained

access to

the help

The user must be logged in the main page of our

application.

 40

methods

and their

issue got

resolved

ALTERNATIVE

FLOWS

USE CASE Selecting

“Wish List”

in Main

Menu

ID UC 8.3

BRIEF

DESCRIPTION
User gets

access to

the Wish

List where

they can

view all

saved

events

PRIMARY

ACTORS
User

SECONDARY

ACTORS
Event

Holders

PRECONDITIONS User is in

the main

menu of

What’s

Mappin

MAIN FLOW 1. User is

in the main

menu
2. User

taps on

“Wish List”

button
3. Events

previously

saved by

the user are

fetched
4. Saved

events

 41

PRECONDITIONS

displayed in

a list

POST

CONDITIONS
User views

previously

saved

events

ALTERNATIVE

FLOWS

MAIN FLOW 1. The user taps on the three bar button to present the

main menu. They can access filters, account information,

promotion, wish list, help and about us sections

POST CONDITIONS User acquired access to the main menu.

ALTERNATIVE FLOWS -

USE CASE Selecting “About Us” in Main Menu

ID UC 8.1

BRIEF DESCRIPTION User gets presented a brief description of the work done

for this application.

PRIMARY ACTORS User

SECONDARY ACTORS -

PRECONDITIONS User is in the main menu of What’s Mappin

MAIN FLOW 1. User is in the main menu
2. User taps on “About Us” button
3. A brief description of the work behind the app gets

displayed

 42

POST CONDITIONS User gained access to the “About Us” page

ALTERNATIVE FLOWS -

 43

Object-Oriented Analysis
Class Entity Diagram

Class Activity Diagram

 44

 45

Entity-Relationship Diagram

Use Case Diagram

 46

Analysis Class diagrams
Class diagrams to define the structure.

• Classes, attributes and operations

• Associations and inheritance

• Data representation

Activity and Sequence diagrams

• Data transformations

• Message call sequences

• Use case realisation

Other architecture/UML diagrams (such as flow)
Examples:

 47

Design

Design Class Diagram

Wireframes and UI/UX

State Machine Diagram

Prototype development / MVP

WM considers user interface to be at the heart of our platform’s functionality. Since our

target demographic will likely be hurried, undecided millenials with little attention to pay to

our app in their group scenario, we intend to make the user flow through as simple and

intuitive as possible.

One of the primary concerns we have considered is interface familiarity. We are aware of the

competitivity of the event mapping industry and although WM will optimise the experience,

we will keep the basic industry structure for mapping applications as dictated by

GoogleMaps.

When considering the platform’s primary colour we channelled our researched into the

psychological effect of color schemes. By drawing on research from industry leading

companies’ color choices, we devised that our primary color should lie in the spectrum of

exciting reds, cheerful oranges and clear yellows, (image below left). When considering this

spectrum in closer study, the third red tier of ‘Passion’ (image below right) stood out as a

more neutral and subtle form of the red ‘excitement’ trajectory WM wants to convey, without

pushing the full extent of the primary color into our user’s screen, which might lead to eye

strain and reduced time spent on our platform. Given the nature of our referral fees (detailed

in business plan) it is important for WM to be able to engage their users in a way that they

spend more time on our platform and explore the different events around them before making

their final decision.

 48

App Implementation

What’s Mappin is an event mapping application designed to provide users with the smoothest

experience of planning a night out. Our main design target was to appeal to university

students. Since all members of our scrum team belong to our target group, we could link our

application to likenesses and tastes similar to ours. Having this advantage, we then researched

existing mapping applications, and noted inefficiencies in terms of format and design

choice. We also conducted a survey...

(SURVEY)

We came to the conclusion that our target group can be most effectively reached by limiting

complexity and by offering a visually attractive, modernized interface.

In designing the interface of an application, an issue that needs both discussion and research

are the colours which will be used. After taking into account our target group, namely

university students looking forward to a night out, we aimed to look for a combination that

would portray the excitement of the clubbing experience. After researching the effects of

colours in our psychology, we chose the colour red, which symbolizes excitement and

activity.

In the first iteration, we focused on functionality, making sure all app components are

displayed to the user. We tested red as our primary colour, however we decided that it did not

look as attractive and we used it as a secondary colour instead. In the second iteration, we

focused to provide the user with the smoothest and easiest experience possible. Our primary

colour was changed to transparent dark grey, which is less tiring for the eyes. We also

restructured our app design, adding photos of numerous venues, aiming to provide the user

 49

with a glimpse of the experiences that await. We also focused on fonts being clear and simple

(Antic and Helvetica). Font sizes are between 16-20, so the user has no trouble reading the

text, and the text itself does not cover the whole screen. We reformatted the buttons to a more

modern style, by removing edges and minimizing the antithesis between them and the

background. Emphasizing on simplicity, we removed unnecessary buttons; for instance we

included the search filters in the main interface, making our menu less complicated. We

aimed for style consistency across our app, using the same background colours, fonts and

styles in every page.

 50

Iteration 1-2 Comparison

After conducting a survey, approaching 30 university students to gain feedback

on our first iteration, our results helped us generate a number of design

improvements that could elevate our application. Below is a description of how

every page of our app got developed in terms of design.

Page 1: Intro Page

Iteration 1
• User is welcomed to our app

• Login options: Facebook, Instagram, Google+, guest

• Background is a blue clubbing image

• Clicker script and Nova Round fonts

Iteration 2
• Focus on simplicity, fewer colours, shorter text, in order to appeal.

• Background is dark grey and displays a red clubbing image with low opacity

• Red is the secondary colour

• Added our app logo-two glasses cheering portraying the nightlife.

 51

Page 2: No Internet

Iteration 1
• Not every user will be connected to the internet when opening our app, therefore this page is

useful as it informs them about the case.

Iteration 2
• Adapted this page’s style to our new design colours and features.

 52

Page 3: Main Interface

Iteration 1
• Google Maps API displaying the map.

• Search bar on top, in order for users to search for events based on name or area.

• Three bar menu on top left redirects user to main menu.

Iteration 2
• Design and colour updated.

• Once map is displayed, local events are also displayed in the form of bubbles.

• Search bar replaced with date bar. We concluded that the common user is more likely to attend an

event in the next few days. Search bar deemed unnecessary due to existence of the drop down

menu of search filters next to the date.

 53

Page 4: Search Results

Iteration 1
• Events mapped as bubbles across the map, after user searches.

• When a bubble gets tapped, info about the specific event gets briefly presented.

• User can tap again to go to another page with specific information about the event and venue.

Iteration 2
• Selected event bubble coloured red compared to the rest (dark grey).

• Bottom screen part displays event info and also lets user visit the venue’s website, share or add

event to the wish list.

• Event organizer rating included to help users decide.

 54

(Page 4.1): Detailed Event Info

Iteration 1
• User gets redirected here after tapping for more info on an event.

• User has access to pictures of event venue

• Event Price, date, time, location determined

• Venue Rating based on users’ ratings

• User can visit event website to book tickets

Iteration 2
• Integrated all necessary event information in Page 4, making this page unnecessary.

 55

Page 5: Main Menu

Iteration 1
• Main menu comprises of filters, my account, promotion, wish list, help and about us sections.

• WM (What’s Mappin) exclusive offers are displayed on bottom of page.

• Map opacity reduced to 52% to emphasize on the main menu.

• All menu options are designed using a common red button format.

Iteration 2
• Icons included next to every button making them more attractive

• Buttons and background reformatted according to new design.

• WM Exclusive offers removed due to repetition and similarity to Promotion (both offers)

• Each option lights up whenever tapped

 56

Page 6: Search Event (Filters)

Iteration 1
• Filters are the first option on the main menu.

• Used to search for specific events, taking into account area, price, venue type and date.

• User must tap Apply Filters for the app to start searching for events.

Iteration 2
• Filters replaced by Search Event.

• Included on Page 3 (Main Interface) on the top right of the screen.

• Quicker way of searching for events (no need to access the main menu)

• Search results based on area, date and price.

 57

Page 7: My Account

Iteration 1
• User’s social network name is displayed

• User can access privacy settings

• User can view previously attended events

• User can sign out of their social network profile

Iteration 2
• User’s profile picture is fetched from signed in social network account. User can change/remove

it if desired

• User can edit the name they use inside the app, also fetched by social network account

• User has access to past events, settings and can log out.

 58

Page 8: Promotion

Iteration 1
• User can input promotion codes in order to gain discounts and offers in different venues.

• User must type the code in the white text box and tap submit to check the promo code database.

Iteration 2
• Insert Promotion Code button on top for the user to type in a promo code they possess.

• All offers and discounts by venues available for the user displayed with venue images

individually beneath

 59

Page 9: Wishlist

Iteration 1
• User can access a list of all previously saved events

• User can select any event from the list to view options

Iteration 2
• Improvements in the design of the list

• Larger buttons for every event

• Images of venues included, with the date

 60

Page 10: Help

Iteration 1
• User can choose between voice assistance, contact-a-bot and FAQs

• Voice assistance targets individuals with vision difficulties (accessibility)

Iteration 2
• Icons for every help option added

• Clearer background

• For Host option included providing guidelines for event hosts

• Online chat included for instant communication with the customer

 61

(Page 11): About Us

Iteration 1

• User can access a brief description of our work for this application.

Iteration 2

• We wanted our interface to comprise of our app’s most necessary functions, therefore

we removed this page

All prototypes are made with moqups.com

 62

Appendix

Meeting Notes

Week 1

Ideas Brainstorming

§ Davin bring up event mapping platform.
§ Yanting suggest focusing on niche market given concerns on market position
§ Teddy argue for focusing on clubbing market instead.
§ Ideas gain overall support from all members
§ Features include event filters, live chat, voice assistance, recommendation

Technology Implementation
§ Teddy and Onur brought up technology to form the application such as google Map API

https://www.w3schools.com/graphics/google_maps_intro.asp
§ John kept log of data type required

Event filters
§ Event Type (e.g. concerts, speeches, internship programs, fundraiser events, entertainment etc.)
§ Date
§ Availability: Fully booked events filtered (e.g. red text) (HTML)
§ Price
§ Age Restriction (18+)
§ Reception (e.g. Today’s Most viewed events, most booked events etc.)
§ Distance from current location (Prefer displaying events closer to the user)
§ Reservation Feature (or hyperlink to redirect to official booking page)

Week 2
Topic:

Business Framework generated

Personas
Yanting and Teresa make a proposal of what data need from the personas as following:

• Yanting suggest focusing on niche market given concerns on market position

• Ideas gain overall support from all members

• Features include event filters, live chat, voice assistance, recommendation

Data log preparation
• Teddy completed a excel database as raw material.

• Onur suggested using JavaScript .

• The database can assign recurring values to variables using the lookup function to cross-

referencing events their location.

• Davin argue build the application as a mobile app, instead of a web, because it can be closer

to our user and fit the user scenario. User would seek event near them when they are outside.

Teresa agree this opinion as well.

https://www.w3schools.com/graphics/google_maps_intro.asp
https://www.w3schools.com/graphics/google_maps_intro.asp

 63

Week 3
Topic:

Group Forming and Ideas Generation

§ The group went through the specification of the output
§ Yanting developed a mind-map to include all aspects of the report and techniques the team can

used for app development.
Figure EventMap 2.0
Technology Implementation
Teddy made reasonable reason why we should use desktop other than Mobile from a technical

perspective:
1. Writing a Mobile app would need additional knowledge of Android.

2. User can open the webpage and saved it on home screen; But user cannot open the application

on desktop if we develop by mobile app

Week 4
Topic:

Scrum Implementation and Business Model Canvas

Scrum Implementation
• Invite member on invision

• Ceremonies: Brief, effective, regular sprint meeting. It shouldn't be more than 15 minute, it

should be host at regular time, regular location, it should have something solved each time.

• Everyone has something to work on and report issues occurs to them each week

Business Model Canvas
• Davin, John and Yanting made a business model canvas for the app

• Key Parners:

1. Event Provider
▪ To provide us with the actual events.

▪ To warn us about any sudden changes, and inform about capacity of events,

requirements for entry etc

2. Advertised Organizations: Our relationship with organizations which we advertise

must be characterized of trust and integrity;they must not delay any payments and

should be open to alterations. They should also be considerate if we propose any

further deals (e.g. advertise us and we will advertise you). Existing relationships are

less risky.
3. Universities: Getting recognized by universities may lead to promotion to

university students; As event provider
§ Key Activities:

1. Gather Requirements
§ Data: Seek the appropriate provider who can give us access to a large number

of academic events
§ Design: A London map covering the screen, with a toolbar on the side, Search

button
§ Functionality: Toolbar containing filter options for specific event search.

Program searches for closest events matching criteria
2. Business Research

§ Search for most appropriate way to implement each component of our project.

Refine suggestions too hard and not essential to our project.
§ Value Proposition

 64

§ EventGo: A portable application that allows quick access to all available

academic events in London, taking into account event specification, location,

time, availability, requirements
§ Preparation for Professional Environment:Get to understand company's

strategic, tactical and operational objectives, how each firm differs from the

other
§ Collaboration: Events filled with students bearing similar interests -> potential

cooperation between students;
· Customer Relationships(Student): Targeted promotion towards students seeking internship

opportunities, to assemble customer base
§ Channels: University, Clubs that student will go, Societies, Facebook/Twittter share link;
§ Customer Segments: University student, Ambitious young individual, Young Adult Seeking

Employment, University graduate searching for a job
§ Cost Structure : Fix cost and Variable Cost
§ Revenue Stream

1. Advertisement: Advertising third parties in our application without interfering with

its functionalities (e.g. banner ads)
2. Selling Customer Data: Consumer profiles, events with highest reception, highest

demand for job etc.
3. Referral fees: Promote event holders and receive a commision per every website

visit they receive
4. 1£ Download/Account fee: Request an amount that seems insignificant in the users'

eyes. We target the price to be multiplied by the number of users, so we gain a source

of income.

Week 5
Topic:

Group Forming and Ideas Generation

Confirmation

· App name: What’s Mappin
· Build android app

Business priorities:
· No emphasis on short term profits
· Market share as many user as possible
· Club promotional, competitive.

Research Topic

· Number of clubbing economy size
· Average spending of student

The decision process between professional events and clubbing event:
Professional

· Quantity to secure profit ~ 90,000 GBP/mth . Sufficient audiences seeking this type of

event and sufficient event providers to make our app operate.
o Bright Network is an organization in London providing those event, they host 6 event

just in September, with 1500+ students for each one .
o Goldman Sachs receives 223,849 job application in 2016 and 4000 secured an

internship. Will you go to goldman Sachs Events if you want to secure a job in such

competition?

 65

Think about just earning 1 pound for each attendant, in one month we will earn 1500 * 6 = 9000 GBP

conservatively from one provider. Assume there is ten event providers: ICEW, TargerJob,

Universities Events, Goldman, Morgan Stanley, Brighter Future, Citi, UBS. Our revenue will be

90,000. Assume our cost of doing the app is purely labour (marketing will be mostly collaborating

with universities, I will need onur or you to tell me the app cost)
90,000/6 group member = 150,000 for each people.
Keen attendees who are willing to pay and attend every event. True, in terms of number, we will have

smaller audience compare to clubs people. But those people trying to land a career are driven, keen.

Just ask 3rd Economics students at UCL, what are they ups to? For them, every event gives them

larger chance of being employed:
o They would pay a 12 pound railway ticket;
o They would spent 4 hours writing their motivation;
o They would write thank-you emails for every HR they met. There efforts gives as an

inelastic price of demand.
o The Wall Street covering letter library launch in October cost 30 pounds. In 30 days

they earned 97,200 pounds.
If we are the only provider who are able to secure the network with Fortune 500 and Top Universities,

shape the user habit and let them be dependent on us in every recruiting season. We will enjoy an

inelastic demand, we have the pricing power.
· Event provider want more attendees, not just for them, but their rival companies. This is the

fundamental difference with clubs. Clubs will be happy if everyone only come to their clubs;

Company will be happy if they got the brightest people--- They are more likely to achieve

that through creating a competition among attendees. Because they are getting headache in

selecting candidate already. If you go to other companies event, Great, now I know you are

not too keen on me ----- One application declined.
Club

• Clubbing & concerts (CC) demographic is similar to our’s - young adults (aged 18-25), with a

concentration on students (who are easier to entice and are an easier demographic to target for

early technology adoption).

• CC attracts a large number of people

o Nearly 40 per cent of Brits go on a late night out once a week, a figure which is

largely consistent across age groups. - (http://www.express.co.uk/life-

style/life/725719/night-out-average-spend-Britain-drink-food-clubbing-partying)

• CC attendees are impulsive (and often due to a state of intoxication & lower inhibitions) and

hence can be targeted up til right before an event has begun:

o Over a third of 18-21 year olds don't leave the house until between 10pm-12am and

88 per cent of respondents stay out for up to six hours.

• CC are high revenue events operating with high profit margins. The industry is built upon

promotion (offering incentives and offers to get people through the doors).

o "The late night economy generates £66 billion annual revenue and is responsible for

one third of town turnover. With this in mind it's important we continue support and

invest to ensure its future.”

o The report shows that Brits spend £58 or over on an average night out (£58.48) just

on food, drinks, entry fee and transport. - (http://www.express.co.uk/life-

style/life/725719/night-out-average-spend-Britain-drink-food-clubbing-partying)

o

• Students have a high PED for CC, hence our app (working with event companies) could offer

discounts & free drinks to events.

• CC has a high number of listing per evening and are highly competitive, hence our platform

could be a powerful promotion tool for venues.

Eventually all member agree to focus on Club

Week 6

http://www.express.co.uk/life-style/life/725719/night-out-average-spend-Britain-drink-food-clubbing-partying
http://www.express.co.uk/life-style/life/725719/night-out-average-spend-Britain-drink-food-clubbing-partying

 66

Topic:
Group Forming and Ideas Generation

Roles

John: The Designer - Writing for the designing part (25%)
Give Teresa all the competitors you find via creating an excel sheet
The Client Roadmap: What will a student and client see when using the app? What pages will they go

through? Registration page (Facebook and Instagram integration), Filter page, Map page, Setting

page.
Textual use-cases
The user interface mark-up for each pages. Find an mark-up app that is suitable for you. Please check

the example in Dribble:
https://dribbble.com/shots/2747314-Event-Discovery-App
https://dribbble.com/shots/3258253-Map
https://dribbble.com/shots/3749277-Receipt-App
Or others you have found
Teresa: Marketer - Writing for the analysation part (25%)
Pricing mechanism
How much is the average student spending
How to create a win-win situation for the event provider
How to attract students customer/Customer acquisition cost
Onur: Developer the functionalities reference is the requirement file
Route map functionalities
Time tag functionalities
Facebook and Instagram API
Write down what comes in your way and tell the group asap, the group will try remove the barriers, if

not, we will record it into sprint meeting. The difficulties you face will goes into the design part.
Teddy: Product Owner, writing for the Business Model (20%)
Problem, Solution, Customer, Priority and competitive advantage
Business Case: Use the business model canvas, analysation framework such as Porter five forces. I

think the justification you write on last week is very good, let’s also put down the professional's idea,

why it will not work for us and why this app will be better. Industry & market feasibility analysis
- Go-to-market strategy and revenue model: The referral fees + commision
Logo making. You can draw one. If not, specify what would it look like and upload here.
The following is the Nials note of factor he will consider:
- There is a clear problem defined. Solution presented is well-thought and of natural remedy for

problem.
- Chosen business frameworks, methodologies, and project management frameworks works

complementarity. It is clear why they are chosen to achieve a particular milestone.
- Industry/market analysis is detailed, with clear action plan.
- Revenue model reflects the analysis done and evidence found.
Yanting: ScrumMaster- Turn out there was no Scrum execution section so will take some task and

writing above (25%)
Make a structure for the report
The Requirement, (check Teddy’s master backlog and our previous backlog) very crucial Onur is

depending on it to write his coding so be specific, find example in the ‘additional’ tab under moodle.

This part should be the conclusion of the analysation we have
- (Non) functional requirements, with MOSCOW
Here is Niall’s comment that can help you:
- Requirements are clearly defined, adopting user-centric approach.

 67

- Requirements are listed in a clear structure and are prioritised based on a realistic reflection of user

needs. Detailed action plan can be derived from said requirements.
- Diagrams were made to help depict user interactions with the system.
Burndown chart
This week product backlog, can you put them into the excel sheet you created to have consistency?

This time add a estimated hours for your and the rest of the team task. Give assumptions first and if

the rest of the team things it don’t fit

Davin
1. Application Testing, work closely along with Onur

2. Create a Database that is usable for Onur

Because you were not here on Friday so this is the two task here now the team gives you. Yanting

know that you talked to Teddy, has he given you extra items?
Topic:

User Interface

 68

Source Code for WhatsMappin:
package com.example.currentplacedetailsonmap;

import android.content.DialogInterface;

import android.content.pm.PackageManager;

import android.graphics.Color;

import android.location.Location;

import android.os.AsyncTask;

import android.os.Bundle;

import android.os.Environment;

import android.os.StrictMode;

import android.support.annotation.NonNull;

import android.support.v4.app.ActivityCompat;

import android.support.v4.content.ContextCompat;

import android.support.v7.app.AlertDialog;

import android.support.v7.app.AppCompatActivity;

import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.Button;

import android.widget.FrameLayout;

import android.widget.TextView;

import com.google.android.gms.location.FusedLocationProviderClient;

import com.google.android.gms.location.LocationServices;

import com.google.android.gms.location.places.GeoDataClient;

import com.google.android.gms.location.places.PlaceDetectionClient;

import com.google.android.gms.location.places.PlaceLikelihood;

import com.google.android.gms.location.places.PlaceLikelihoodBufferResponse;

import com.google.android.gms.location.places.Places;

import com.google.android.gms.maps.CameraUpdateFactory;

import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.OnMapReadyCallback;

import com.google.android.gms.maps.SupportMapFragment;

import com.google.android.gms.maps.model.CameraPosition;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.MarkerOptions;

import com.google.android.gms.maps.model.PolylineOptions;

import com.google.android.gms.tasks.OnCompleteListener;

import com.google.android.gms.tasks.Task;

import org.apache.poi.hssf.usermodel.HSSFCell;

import org.apache.poi.hssf.usermodel.HSSFRow;

import org.apache.poi.hssf.usermodel.HSSFSheet;

import org.apache.poi.hssf.usermodel.HSSFWorkbook;

import org.apache.poi.poifs.filesystem.POIFSFileSystem;

import org.json.JSONArray;

import org.json.JSONException;

import org.json.JSONObject;

import java.io.BufferedReader;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

public class EventGoMapsActivity extends AppCompatActivity

 69

 implements OnMapReadyCallback {

 private static final String TAG = EventGoMapsActivity.class.getSimpleName();

 private GoogleMap mMap;

 private CameraPosition mCameraPosition;

 // The entry points to the Places API.

 private GeoDataClient mGeoDataClient;

 private PlaceDetectionClient mPlaceDetectionClient;

 // The entry point to the Fused Location Provider.

 private FusedLocationProviderClient mFusedLocationProviderClient;

 // A default location (Sydney, Australia) and default zoom to use when location permission is

 // not granted.

 private final LatLng mDefaultLocation = new LatLng(-33.8523341, 151.2106085);

 private static final int DEFAULT_ZOOM = 15;

 private static final int PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION = 1;

 private boolean mLocationPermissionGranted;

 // The geographical location where the device is currently located. That is, the last-known

 // location retrieved by the Fused Location Provider.

 private Location mLastKnownLocation;

 // Keys for storing activity state.

 private static final String KEY_CAMERA_POSITION = "camera_position";

 private static final String KEY_LOCATION = "location";

 // Used for selecting the current place.

 private static final int M_MAX_ENTRIES = 5;

 private String[] mLikelyPlaceNames;

 private String[] mLikelyPlaceAddresses;

 private String[] mLikelyPlaceAttributions;

 private LatLng[] mLikelyPlaceLatLngs;

 private static List<Integer> venueLng = new ArrayList<Integer>();

 private static List<Integer> venueLat = new ArrayList<Integer>();

 private static List<String> venueNames = new ArrayList<String>();

 private static StringBuffer response = new StringBuffer();

 private static String jsonOutput;

 private static String stringUrl ="https://maps.googleapis.com/maps/api/directions/json?origin="

 + "51.50987,-0.11809" +"&destination=" + "52.48948,-1.89856" +

 "&key=AIzaSyDgb1sP_RQkqr8K1USTU0B5uK_LzUHdLjM";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // Retrieve location and camera position from saved instance state.

 if (savedInstanceState != null) {

 mLastKnownLocation = savedInstanceState.getParcelable(KEY_LOCATION);

 mCameraPosition = savedInstanceState.getParcelable(KEY_CAMERA_POSITION);

 }

 // Retrieve the content view that renders the map.

 setContentView(R.layout.activity_maps);

 // Construct a GeoDataClient.

 mGeoDataClient = Places.getGeoDataClient(this, null);

 // Construct a PlaceDetectionClient.

 mPlaceDetectionClient = Places.getPlaceDetectionClient(this, null);

 // Construct a FusedLocationProviderClient.

 mFusedLocationProviderClient = LocationServices.getFusedLocationProviderClient(this);

 70

 // Build the map.

 SupportMapFragment mapFragment = (SupportMapFragment) getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 @Override

 protected void onSaveInstanceState(Bundle outState) {

 if (mMap != null) {

 outState.putParcelable(KEY_CAMERA_POSITION, mMap.getCameraPosition());

 outState.putParcelable(KEY_LOCATION, mLastKnownLocation);

 super.onSaveInstanceState(outState);

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.current_place_menu, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 if (item.getItemId() == R.id.option_get_place) {

 showCurrentPlace();

 }

 return true;

 }

 @Override

 public void onMapReady(GoogleMap map) {

 mMap = map;

 // Use a custom info window adapter to handle multiple lines of text in the

 // info window contents.

 mMap.setInfoWindowAdapter(new GoogleMap.InfoWindowAdapter() {

 @Override

 // Return null here, so that getInfoContents() is called next.

 public View getInfoWindow(Marker arg0) {

 return null;

 }

 @Override

 public View getInfoContents(Marker marker) {

 // Inflate the layouts for the info window, title and snippet.

 View infoWindow = getLayoutInflater().inflate(R.layout.custom_info_contents,

 (FrameLayout) findViewById(R.id.map), false);

 TextView title = ((TextView) infoWindow.findViewById(R.id.title));

 title.setText(marker.getTitle());

 TextView snippet = ((TextView) infoWindow.findViewById(R.id.snippet));

 snippet.setText(marker.getSnippet());

 return infoWindow;

 }

 });

 //excelReader();

 testPlotter();

 //fromExcelPlotter();

 // Prompt the user for permission.

 getLocationPermission();

 // Turn on the My Location layer and the related control on the map.

 updateLocationUI();

 71

 // Get the current location of the device and set the position of the map.

 getDeviceLocation();

 }

 private void getDeviceLocation() {

 /*

 * Get the best and most recent location of the device, which may be null in rare

 * cases when a location is not available.

 */

 try {

 if (mLocationPermissionGranted) {

 Task<Location> locationResult = mFusedLocationProviderClient.getLastLocation();

 locationResult.addOnCompleteListener(this, new OnCompleteListener<Location>() {

 @Override

 public void onComplete(@NonNull Task<Location> task) {

 if (task.isSuccessful()) {

 // Set the map's camera position to the current location of the device.

 mLastKnownLocation = task.getResult();

 mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(

 new LatLng(mLastKnownLocation.getLatitude(),

 mLastKnownLocation.getLongitude()), DEFAULT_ZOOM));

 } else {

 Log.d(TAG, "Current location is null. Using defaults.");

 Log.e(TAG, "Exception: %s", task.getException());

 mMap.moveCamera(CameraUpdateFactory

 .newLatLngZoom(mDefaultLocation, DEFAULT_ZOOM));

 mMap.getUiSettings().setMyLocationButtonEnabled(false);

 }

 }

 });

 }

 } catch (SecurityException e) {

 Log.e("Exception: %s", e.getMessage());

 }

 }

 private void getLocationPermission() {

 /*

 * Request location permission, so that we can get the location of the

 * device. The result of the permission request is handled by a callback,

 * onRequestPermissionsResult.

 */

 if (ContextCompat.checkSelfPermission(this.getApplicationContext(),

 android.Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 mLocationPermissionGranted = true;

 } else {

 ActivityCompat.requestPermissions(this,

 new String[]{android.Manifest.permission.ACCESS_FINE_LOCATION},

 PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION);

 }

 }

 @Override

 public void onRequestPermissionsResult(int requestCode,

 @NonNull String permissions[],

 @NonNull int[] grantResults) {

 mLocationPermissionGranted = false;

 switch (requestCode) {

 case PERMISSIONS_REQUEST_ACCESS_FINE_LOCATION: {

 // If request is cancelled, the result arrays are empty.

 if (grantResults.length > 0

 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 mLocationPermissionGranted = true;

 }

 }

 72

 }

 updateLocationUI();

 }

 private void showCurrentPlace() {

 if (mMap == null) {

 return;

 }

 if (mLocationPermissionGranted) {

 // Get the likely places - that is, the businesses and other points of interest that

 // are the best match for the device's current location.

 @SuppressWarnings("MissingPermission") final Task<PlaceLikelihoodBufferResponse> placeResult =

 mPlaceDetectionClient.getCurrentPlace(null);

 placeResult.addOnCompleteListener

 (new OnCompleteListener<PlaceLikelihoodBufferResponse>() {

 @Override

 public void onComplete(@NonNull Task<PlaceLikelihoodBufferResponse> task) {

 if (task.isSuccessful() && task.getResult() != null) {

 PlaceLikelihoodBufferResponse likelyPlaces = task.getResult();

 // Set the count, handling cases where less than 5 entries are returned.

 int count;

 if (likelyPlaces.getCount() < M_MAX_ENTRIES) {

 count = likelyPlaces.getCount();

 } else {

 count = M_MAX_ENTRIES;

 }

 int i = 0;

 mLikelyPlaceNames = new String[count];

 mLikelyPlaceAddresses = new String[count];

 mLikelyPlaceAttributions = new String[count];

 mLikelyPlaceLatLngs = new LatLng[count];

 for (PlaceLikelihood placeLikelihood : likelyPlaces) {

 // Build a list of likely places to show the user.

 mLikelyPlaceNames[i] = (String) placeLikelihood.getPlace().getName();

 mLikelyPlaceAddresses[i] = (String) placeLikelihood.getPlace()

 .getAddress();

 mLikelyPlaceAttributions[i] = (String) placeLikelihood.getPlace()

 .getAttributions();

 mLikelyPlaceLatLngs[i] = placeLikelihood.getPlace().getLatLng();

 i++;

 if (i > (count - 1)) {

 break;

 }

 }

 // Release the place likelihood buffer, to avoid memory leaks.

 likelyPlaces.release();

 // Show a dialog offering the user the list of likely places, and add a

 // marker at the selected place.

 openPlacesDialog();

 } else {

 Log.e(TAG, "Exception: %s", task.getException());

 }

 }

 });

 } else {

 // The user has not granted permission.

 Log.i(TAG, "The user did not grant location permission.");

 // Add a default marker, because the user hasn't selected a place.

 73

 mMap.addMarker(new MarkerOptions()

 .title(getString(R.string.default_info_title))

 .position(mDefaultLocation)

 .snippet(getString(R.string.default_info_snippet)));

 // Prompt the user for permission.

 getLocationPermission();

 }

 }

 private void openPlacesDialog() {

 // Ask the user to choose the place where they are now.

 DialogInterface.OnClickListener listener = new DialogInterface.OnClickListener() {

 @Override

 public void onClick(DialogInterface dialog, int which) {

 // The "which" argument contains the position of the selected item.

 LatLng markerLatLng = mLikelyPlaceLatLngs[which];

 String markerSnippet = mLikelyPlaceAddresses[which];

 if (mLikelyPlaceAttributions[which] != null) {

 markerSnippet = markerSnippet + "\n" + mLikelyPlaceAttributions[which];

 }

 // Add a marker for the selected place, with an info window

 // showing information about that place.

 mMap.addMarker(new MarkerOptions()

 .title(mLikelyPlaceNames[which])

 .position(markerLatLng)

 .snippet(markerSnippet));

 // Position the map's camera at the location of the marker.

 mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(markerLatLng,

 DEFAULT_ZOOM));

 }

 };

 // Display the dialog.

 AlertDialog dialog = new AlertDialog.Builder(this)

 .setTitle(R.string.pick_place)

 .setItems(mLikelyPlaceNames, listener)

 .show();

 }

 private void updateLocationUI() {

 if (mMap == null) {

 return;

 }

 try {

 if (mLocationPermissionGranted) {

 mMap.setMyLocationEnabled(true);

 mMap.getUiSettings().setMyLocationButtonEnabled(true);

 } else {

 mMap.setMyLocationEnabled(false);

 mMap.getUiSettings().setMyLocationButtonEnabled(false);

 mLastKnownLocation = null;

 getLocationPermission();

 }

 } catch (SecurityException e) {

 Log.e("Exception: %s", e.getMessage());

 }

 }

 private String getMapsApiDirectionsUrl(LatLng origin,LatLng dest) {

 // Origin of route

 String str_origin = "origin="+origin.latitude+","+origin.longitude;

 // Destination of route

 String str_dest = "destination="+dest.latitude+","+dest.longitude;

 74

 // Sensor enabled

 String sensor = "sensor=false";

 // Building the parameters to the web service

 String parameters = str_origin+"&"+str_dest+"&"+sensor;

 // Output format

 String output = "json";

 // Building the url to the web service

 String url = "https://maps.googleapis.com/maps/api/directions/"+output+"?"+parameters;

 return url;

 }

 private void fromExcelPlotter() {

 for (int i = 0; i < venueNames.size(); i++) {

 mMap.addMarker(new MarkerOptions().position

 (new LatLng((double) venueLat.get(i), (double) venueLng.get(i)))

 .title(venueNames.get(i)));

 }

 }

 public void testPlotter() {

 StrictMode.ThreadPolicy policy = new StrictMode.ThreadPolicy.Builder().permitAll().build();

 StrictMode.setThreadPolicy(policy);

 LatLng origin = new LatLng(51.50987, -0.11809);

 LatLng dest = new LatLng(52.48948,-1.89856);

 String url = getMapsApiDirectionsUrl(origin, dest);

 ReadTask downloadTask = new ReadTask();

 downloadTask.execute(url);

 }

 private class ReadTask extends AsyncTask<String, Void , String> {

 @Override

 protected String doInBackground(String... url) {

 String data = "";

 try {

 MapHttpConnection http = new MapHttpConnection();

 data = http.readUr(url[0]);

 } catch (Exception e) {

 Log.d("Background Task", e.toString());

 }

 return data;

 }

 @Override

 protected void onPostExecute(String result) {

 super.onPostExecute(result);

 new EventGoMapsActivity.ReadTask.ParserTask().execute(result);

 }

 private class ParserTask extends AsyncTask<String,Integer, List<List<HashMap<String , String >>>> {

 @Override

 75

 protected List<List<HashMap<String, String>>> doInBackground(

 String... jsonData) {

 // TODO Auto-generated method stub

 JSONObject jObject;

 List<List<HashMap<String, String>>> routes = null;

 try {

 jObject = new JSONObject(jsonData[0]);

 PathJSONParser parser = new PathJSONParser();

 routes = parser.parse(jObject);

 } catch (Exception e) {

 e.printStackTrace();

 }

 return routes;

 }

 @Override

 protected void onPostExecute(List<List<HashMap<String, String>>> routes) {

 ArrayList<LatLng> points = null;

 PolylineOptions polyLineOptions = null;

 // traversing through routes

 for (int i = 0; i < routes.size(); i++) {

 points = new ArrayList<LatLng>();

 polyLineOptions = new PolylineOptions();

 List<HashMap<String, String>> path = routes.get(i);

 for (int j = 0; j < path.size(); j++) {

 HashMap<String, String> point = path.get(j);

 double lat = Double.parseDouble(point.get("lat"));

 double lng = Double.parseDouble(point.get("lng"));

 LatLng position = new LatLng(lat, lng);

 points.add(position);

 }

 polyLineOptions.addAll(points);

 polyLineOptions.width(4);

 polyLineOptions.color(Color.BLUE);

 }

 mMap.addPolyline(polyLineOptions);

 }}

 }

}

 76

Source Code for JSONParser:
package com.example.currentplacedetailsonmap;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.UnsupportedEncodingException;

import org.apache.http.HttpEntity;

import org.apache.http.HttpResponse;

import org.apache.http.client.ClientProtocolException;

import org.apache.http.client.methods.HttpPost;

import org.apache.http.impl.client.DefaultHttpClient;

import org.json.JSONException;

import org.json.JSONObject;

import android.util.Log;

public class JSONParser {

 private static String url ="http://maps.googleapis.com/maps/api/geocode/json?origin="

 + "51.50987,-0.11809" +"&destination=" + "52.48948,-1.89856" +

 "&keyAIzaSyDgb1sP_RQkqr8K1USTU0B5uK_LzUHdLjM";

 static InputStream is = null;

 static JSONObject jObj = null;

 static String json = "";

 public JSONObject getJSONFromUrl(String url) {

 // Making HTTP request

 try {

 // defaultHttpClient

 DefaultHttpClient httpClient = new DefaultHttpClient();

 HttpPost httpPost = new HttpPost(url);

 HttpResponse httpResponse = httpClient.execute(httpPost);

 HttpEntity httpEntity = httpResponse.getEntity();

 is = httpEntity.getContent();

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 } catch (ClientProtocolException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 try {

 BufferedReader reader = new BufferedReader(new InputStreamReader(

 is, "iso-8859-1"), 8);

 StringBuilder sb = new StringBuilder();

 String line = null;

 while ((line = reader.readLine()) != null) {

 sb.append(line + "n");

 }

 is.close();

 json = sb.toString();

 } catch (Exception e) {

 Log.e("Buffer Error", "Error converting result " + e.toString());

 }

 // try parse the string to a JSON object

 try {

 77

 jObj = new JSONObject(json);

 } catch (JSONException e) {

 Log.e("JSON Parser", "Error parsing data " + e.toString());

 }

 // return JSON String

 return jObj;

 }

}

Source Code for MapHTTPConnection
package com.example.currentplacedetailsonmap;

import android.util.Log;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

public class MapHttpConnection {

 public String readUr(String mapsApiDirectionsUrl) throws IOException {

 String data = "";

 InputStream istream = null;

 HttpURLConnection urlConnection = null;

 try {

 URL url = new URL(mapsApiDirectionsUrl);

 urlConnection = (HttpURLConnection) url.openConnection();

 urlConnection.connect();

 istream = urlConnection.getInputStream();

 BufferedReader br = new BufferedReader(new InputStreamReader(istream));

 StringBuffer sb = new StringBuffer();

 String line ="";

 while ((line = br.readLine()) != null) {

 sb.append(line);

 }

 data = sb.toString();

 br.close();

 }

 catch (Exception e) {

 Log.d("Exception:", e.toString());

 } finally {

 istream.close();

 urlConnection.disconnect();

 }

 return data;

 }

}

 78

References

All Events in the City. (2016). About Us. Available: https://allevents.in/blog/about/ . Last accessed 1

Dec 2017.

Amitech. (2017). All Events in City - Discover Local Events. Available:

https://itunes.apple.com/us/app/all-events-in-city-discover-local-events/id488116646?mt=8. Last

accessed 1 Dec 2017.

Antwonne D. (2017). How to use the Eventbrite iPhone app. Available:

https://www.eventbrite.co.uk/support/articles/en_US/Multi_Group_How_To/how-to-use-the-

eventbrite-iphone-app?lg=en_GB. Last accessed 1 Dec 2017.

Bandsintown. (2017). Bandsintown Concerts. Available:

https://itunes.apple.com/gb/app/bandsintown-concerts/id471394851?mt=8. Last accessed 1 Dec 2017.

City Data Company. (2017). Communities are our passion. Available:

https://www.walkaboutapp.com/about/. Last accessed 1 Dec 2017.

DoStuff. (2017). DoStuff - What To Do Tonight. Available: https://itunes.apple.com/us/app/dostuff-

what-to-do-tonight/id970122355?mt=8. Last accessed 1 Dec 2017.

DoStuff. (2017). What is DoStuff?. Available: https://dostuffmedia.com/app-faq. Last accessed 1 Dec

2017

Eventbase. (2016). Eventbase - the Free Event App for Everyone.Available:

https://itunes.apple.com/gb/app/eventbase-the-free-event-app-for-everyone/id580233134?mt=8. Last

accessed 1 Dec 2017.

Eventbase. (2017). About us. Available: https://www.eventbase.com/about-us. Last accessed 1 Dec

2017.

Eventbase. (2017). Eventbase Free. Available: https://www.eventbase.com/free-event-app. Last

accessed 1 Dec 2017.

Eventbrite. (2016). Eventbrite. Available:

https://itunes.apple.com/gb/app/eventbrite/id487922291?mt=8. Last accessed 1 Dec 2017.

EventNook. (2017). Event Management Platform. Available: http://overview.eventnook.com. Last

accessed 1 Dec 2017.

EventNook. (2017). EventNook CheckIn Pro. Available: https://itunes.apple.com/us/app/eventnook-

checkin-pro/id1178895813?mt=8. Last accessed 1 Dec 2017.
Hackett, B. (2015). TINDER’S FIRST YEAR USER GROWTH STRATEGY.Available:

https://parantap.com/tinders-first-year-growth-strategy/. Last accessed 2 Dec 2017.

Lee, S. (2016). What Deliveroo Did To Get Traction And Become a Billion-Dollar Company.

Available: https://www.referralcandy.com/blog/deliveroo-marketing-strategy/. Last accessed 2 dec

2017.

 79

McClelland, L. (2016). 5 Marketing Lessons Learned From UberEATS.Available:

https://www.mediapost.com/publications/article/272424/5-marketing-lessons-learned-from-

ubereats.html. Last accessed 2 Dec 2017.

DoStuff. (2017). WE ARE DOSTUFF. Available: https://dostuffmedia.com/about. Last accessed 1

Dec 2017.

Vendini. (2001). Mobile Apps. Available: https://vendini.com/mobile-apps. Last accessed 1 Dec 2017.

Vendini. (2013). Vendini TicketScan. Available: https://itunes.apple.com/cg/app/vendini-

ticketscan/id376436697?mt=8. Last accessed 1 Dec 2017.

